Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis.
نویسندگان
چکیده
Although the gene defects for several mouse mutants with severe osteopetrosis are known, the genes underlying human infantile malignant recessive osteopetrosis remain elusive. Osteopetrosis is thought to be caused by a defect in osteoclast function. These cells degrade bone material in a tightly sealed extracellular compartment that is acidified by a vacuolar (V)-type H(+)-ATPase. Genes encoding components of the acidification machinery are candidate genes for osteopetrosis. In five of ten patients with infantile malignant osteopetrosis, we now demonstrate five different mutations in OC116, the gene encoding the a3 subunit of the V-ATPase from osteoclasts. Two independent patients were homozygous for mutations that predict a total loss of function by severely truncating the protein. By affecting a splice site, another homozygous mutation deletes 14 amino acids within the N-terminus, which interacts with other subunits of the proton pump. On the other hand, in four patients no mutations were found, and one patient from a consanguineous family did not show homozygosity at the OC116 locus, suggesting that mutations in at least one different gene may underlie osteopetrosis. Our work shows that mutations in the gene encoding the a3 subunit of the proton pump are a rather common cause of infantile osteopetrosis and suggests that this disease is genetically heterogeneous.
منابع مشابه
Effects of human a3 and a4 mutations that result in osteopetrosis and distal renal tubular acidosis on yeast V-ATPase expression and activity.
V-ATPases are multimeric proton pumps. The 100-kDa "a" subunit is encoded by four isoforms (a1-a4) in mammals and two (Vph1p and Stv1p) in yeast. a3 is enriched in osteoclasts and is essential for bone resorption, whereas a4 is expressed in the distal nephron and acidifies urine. Mutations in human a3 and a4 result in osteopetrosis and distal renal tubular acidosis, respectively. Human a3 (G405...
متن کاملA phenocopy of CAII deficiency: a novel genetic explanation for inherited infantile osteopetrosis with distal renal tubular acidosis.
The rare bone thickening disease osteopetrosis occurs in various forms, one of which is accompanied by renal tubular acidosis (RTA), and is known as Guibaud-Vainsel syndrome or marble brain disease. Clinical manifestations of this autosomal recessive syndrome comprise increased bone density, growth failure, intracerebral calcification, facial dysmorphism, mental retardation, and conductive hear...
متن کاملOptic Nerve Compression and Retinal Degeneration in Tcirg1 Mutant Mice Lacking the Vacuolar-Type H+-ATPase a3 Subunit
BACKGROUND Vacuolar-type proton transporting ATPase (V-ATPase) is involved in the proper development of visual function. Mutations in the Tcirg1 (also known as Atp6V0a3) locus, which encodes the a3 subunit of V-ATPase, cause severe autosomal recessive osteopetrosis (ARO) in humans. ARO is often associated with impaired vision most likely because of nerve compression at the optic canal. We exami...
متن کاملAn SNX10 mutation causes malignant osteopetrosis of infancy.
BACKGROUND Osteopetrosis is a life-threatening, rare disorder typically resulting from osteoclast dysfunction and infrequently from failure to commitment to osteoclast lineage. Patients commonly present in infancy with macrocephaly, feeding difficulties, evolving blindness and deafness, and bone marrow failure. In ∼70% of the patients there is a molecularly defined failure to maintain an acid p...
متن کاملA fatal case of infantile malignant osteopetrosis complicated by pulmonary arterial hypertension after hematopoietic stem cell transplantation.
Infantile malignant osteopetrosis (IMO) is a rare and fatal autosomal recessive condition characterized by a generalized increased in bone density. Hematopoietic stem cell transplantation (HSCT) is the only effective and rational therapy with achieving long-term disease-free survival. However, complications with HSCT for IMO remain unclear. Here we describe a male infant with IMO, carrying two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 9 13 شماره
صفحات -
تاریخ انتشار 2000